дите радиус окружности, касающейся всех трех полуокружностей, если известно, что ее центр удален от прямой AC на расстояние, равное a.

2427. Площадь трапеции ABCD равна S, отношение оснований — AD:BC=2:1. Отрезок MN расположен так, что он параллелен диагонали BD, пересекает диагональ AC, а отрезок AM параллелен отрезку CN. Найдите площадь четырехугольника AMND, если CN:AM=3:1, BD:MN=6:1. (Найдите все решения.)

11. КООРДИНАТЫ. ВЕКТОРЫ

2428. Точка $M(x_0; y_0)$ — середина отрезка с концами в точках $A(x_1; y_1)$ и $B(x_2; y_2)$. Докажите, что

$$x_0 = \frac{x_1 + x_2}{2}$$
 if $y_0 = \frac{y_1 + y_2}{2}$.

2429. Пусть M — середина отрезка AB, O — произвольная точка. Докажите, что $\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$.

2430. Даны точки A(-1; 5) и B(3; -7). Найдите расстояние от начала координат до середины отрезка AB.

2431. Даны точки A(3; 5), B(-6; -2) и C(0; -6). Докажите, что треугольник ABC — равнобедренный.

2432. Даны точки A(2; 4), B(6; -4) и C(-8; -1). Докажите, что треугольник ABC — прямоугольный.

2433. Даны точки A(0; -2), B(-2; 1), C(0; 0) и D(2; -9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.

2434. Составьте уравнение прямой, проходящей через точку M(-3, 1) параллельно: а) оси x; б) оси y.

2435. Составьте уравнение прямой, проходящей через точку M(-3; 2) параллельно прямой 2x - 3y + 4 = 0.

2436. Составьте уравнение прямой, проходящей через точку пересечения

прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.

2437. Найдите радиус и координаты центра окружности, заданной уравнением:

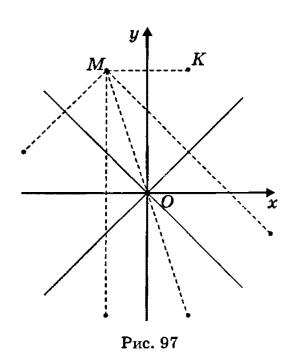
a)
$$(x-3)^2 + (y+2)^2 = 16$$
;

6)
$$x^2 + y^2 - 2(x - 3y) - 15 = 0$$
;

B)
$$x^2 + y^2 = x + y + \frac{1}{2}$$
.

2438. Дан правильный шестиугольник ABCDEF. Известно, что $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AF} = \overrightarrow{b}$. Найдите векторы \overrightarrow{AD} , \overrightarrow{BD} , \overrightarrow{FD} и \overrightarrow{BM} , где M — середина стороны EF.

2439. Нарис. 97 дана точка M(-1,3). Найдите координаты точки, симметричной точке M относительно: а) оси x; б) оси y; в) начала координат; г) точки K(3;1); д) биссектрисы I и III координатных углов; е) биссектрисы II и IV координатных углов.



2440. Найдите координаты вершин треугольника, стороны которого лежат на прямых 2x + y - 6 = 0, x - y + 4 = 0 и y + 1 = 0.

2441. Даны точкиA(-2; 2), B(-2; -2) и C(6; 6). Составьте уравнения прямых, на которых лежат стороны треугольника ABC.

2442. Даны точки A(4; 1), B(-8; 0) и C(0; -6). Составьте уравнение прямой, на которой лежит медиана AM треугольника ABC.

2443. Докажите, что точки A(-1; -2), B(2; -1) и C(8; 1) лежат на одной прямой.

2444. Даны точки A(-2; 0), B(1; 6), C(5; 4) и B(2; -2). Докажите, что четырехугольник ABCD — прямоугольник.

2445. Найдите расстояние между точкой A(1; 7) и точкой пересечения прямых x - y - 1 = 0 и x + 3y - 12 = 0.

2446. Даны точки A(0; 0), B(-2; 1), C(3; 3), D(2; -1) и окружность $(x - 1)^2 + (y + 3)^2 = 25$. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

 $m{2447.}$ Точка M делит сторону BC треугольника ABC в отношении $rac{BM}{MC}=$

 $=rac{2}{5}$. Известно, что $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AC}=\overrightarrow{b}$.

Найдите вектор \overrightarrow{AM} .

2448. Даны точки A(-2; 1), B(2; 5) и C(4; -1). Точка D лежит на продолжении медианы AM за точку M, причем четырехугольник ABDC — параллелограмм. Найдите координаты точки D.

2449. Окружность c центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

2450. Пусть AA_1 , BB_1 , CC_1 — медианы треугольника ABC. Докажите, что $\overrightarrow{AA}_1 + \overrightarrow{BB}_1 + \overrightarrow{CC}_1 = \overrightarrow{0}$.

2451. Пусть M — середина отрезка AB, M_1 — середина отрезка A_1B_1 . Докажите, что $\overrightarrow{MM}_1=\frac{1}{2}(\overrightarrow{AA}_1+\overrightarrow{BB}_1)$.

2452. Пусть M — точка пересечения диагоналей AC и BD параллелограмма ABCD, O — произвольная точка. Докажите, что

$$\overrightarrow{OM} = \frac{1}{4}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}).$$

 $2453.\ M_1,\ M_2,\ ...,\ M_6$ — середины сторон выпуклого шестиугольника $A_1A_2...A_6$. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M_1M_2 , M_3M_4,M_5M_6 .

2454. Две взаимно перпендикулярные хорды AB и CD окружности с центром O пересекаются в точке M. Докажите, что

$$\overrightarrow{ON} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}).$$

2455. Даны точки A(-6; -1), B(1; 2) и C(-3; -2). Найдите координаты вершины M параллелограмма ABMC.

2456. Докажите, что прямые, заданные уравнениями $y=k_1x+l_1$ и $y=k_2x+l_2$, перпендикулярны тогда и только тогда, когда $k_1k_2=-1$.

2457. Пусть M — точка пересечения медиан треугольника ABC. Докажите, что \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = $\overrightarrow{0}$.

2458. Пусть M — точка пересечения медиан AA_1 , BB_1 и CC_1 треугольника ABC. Докажите, что

$$\overrightarrow{MA}_1 + \overrightarrow{MB}_1 + \overrightarrow{MC}_1 = \overrightarrow{0}$$
.

2459. Даны два параллелограмма ABCD и $A_1B_1C_1D_1$, у которых O и O_1 — точки пересечения диагоналей. Докажите равенство:

$$\overrightarrow{OO}_1 = \frac{1}{4}(\overrightarrow{AA}_1 + \overrightarrow{BB}_1 + \overrightarrow{CC}_1 + \overrightarrow{DD}_1).$$

2460. Даны точки A(0; 0), B(4; 0) и C(0; 6). Составьте уравнение окружности, описанной около треугольника ABC.

2461. На продолжениях сторон треугольника ABC взяты точки A_1 , B_1 и C_1 так, что $\overrightarrow{AB}_1 = 2\overrightarrow{AB}$, $\overrightarrow{BC}_1 = 2\overrightarrow{BC}$ и $\overrightarrow{CA}_1 = 2\overrightarrow{AC}$. Найдите площадь треугольника $A_1B_1C_1$, если известно, что площадь треугольника ABC равна S.

2462. Пусть точки A_1 , B_1 , C_1 — середины сторон BC, AC и AB треугольника ABC (рис. 98, a, b). Докажите, что для любой точки D выполняется равенство

$$\overrightarrow{OA}_1 + \overrightarrow{OB}_1 + \overrightarrow{OC}_1 = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

2463. Пусть M — точка пересечения медиан треугольника ABC, O — произвольная точка. Докажите, что

$$\overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$$

2464. Найдите длину хорды, которую на прямой y = 3x высекает окружность $(x + 1)^2 + (y - 2)^2 = 25$.

2465. Докажите, что прямая 3x - 4y + 25 = 0 касается окружности $x^2 + y^2 = 25$, и найдите координаты точки касания.

2466. Составьте уравнение окружности, касающейся осей координат и проходящей через точку *A*(2; 1).

2467. Найдите координаты точек пересечения окружностей $(x-2)^2 + (y-10)^2 = 50$ и $x^2 + y^2 + 2(x-y) - 18 = 0$.

2468. Даны точки A(-6; 1) и B(4; 6). Найдите координаты точки C, делящей отрезок AB в отношении 2: 3, считая от точки A.

2469. Даны точки A(5; 5), B(8; -3) и C(-4; 1). Найдите координаты точки

пересечения медиан треугольника *ABC*.

2470. Даны точкиA(-1;3), B(1;-2), C(6;0) и D(4;5). Докажите, что четырехугольник ABCD — квадрат.

2471. Известно, что прямая с угловым коэффициентом k проходит через точку $M(x_0; y_0)$. Докажите, что ее уравнение имеет вид $y - y_0 = k(x - x_0)$.

2472. Известно, что прямая проходит через точки $M(x_1; y_1)$ и $N(x_2; y_2)$, причем $x_1 \neq x_2$ и $y_1 \neq y_2$. Докажите, что

ее уравнение имеет вид
$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$
.

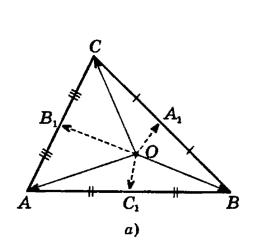
2473. Составьте уравнение окружности, проходящей через точки A(-1; 1), B(9; 3) и C(1; 7).

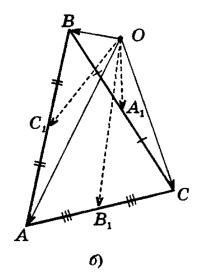
2474. Даны точки A(-2; 3), B(2; 6), C(6; -1) и D(-3; -4). Докажите, что диагонали четырехугольника ABCD взаимно перпендикулярны.

2475. Составьте уравнение прямой, проходящей через точку M(-1; 4) перпендикулярно прямой x - 2y + 4 = 0.

2476. Даны точкиA(6;1), B(-5;-4), C(-2;5). Составьте уравнение прямой, на которой лежит высота треугольника ABC, проведенная из вершины A.

2477. С помощью метода координат докажите, что суммы квадратов расстояний от произвольной точки плоскости до противоположных вершин прямоугольника равны между собой.





2478. Пусть M и N — точки пересечения медиан треугольников ABC и PQR соответственно. Докажите, что $\overrightarrow{MN} = \frac{1}{3}(\overrightarrow{AP} + \overrightarrow{BQ} + \overrightarrow{CR})$.

2479. Докажите, что существует треугольник, стороны которого равны и параллельны медианам данного треугольника.

2480. Составьте уравнение прямой, проходящей через точку *A*(0; 7) и касающейся окружности

$$(x-15)^2 + (y-2) = 25.$$

2481. Даны точки A(5; -1), B(4; -8), C(-4; -4). Найдите координаты точки пересечения высот треугольника ABC.

2482. С помощью метода координат найдите геометрическое место точек плоскости, разность квадратов расстояний от которых до двух данных точек постоянна.

2483. Докажите, что расстояние от точки $M(x_0; y_0)$ до прямой, заданной уравнением ax + by + c = 0, равно $\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$

2484. Составьте уравнение окружности с центром в точке M(3; 2), касающейся прямой y = 2x + 6.

2485. Точка M лежит на прямой 3x - 4y + 34 = 0, а точка N — на окружности $x^2 + y^2 - 8x + 2y - 8 = 0$. Найдите наименьшее расстояние между точками M и N.

2486. Найдите расстояние между параллельными прямыми y = -3x + 5 и y = -3x - 4.

2487. Даны две точки $A(x_1; y_1)$ и $B(x_2; y_2)$ и неотрицательное число λ . Найдите координаты точки M луча AB, для которой $AM:AB=\lambda$.

2488. Даны треугольник \overrightarrow{ABC} и точка M. Известно, что \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = $\overrightarrow{0}$. Докажите, что M — точка

пересечения медиан треугольника *ABC*.

2489. Даны точки A и B. Найдите геометрическое место точек M, для которых AM = 2BM.

2490. Даны точки A, B и положительное число d. Найдите геометрическое место точек M, для которых $AM^2 + BM^2 = d$.

2491. На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно такие, что $AM:AC=CN:CE=\lambda$. Известно, что точки B, M и N лежат на одной прямой. Найдите λ .

2492. Докажите, что при произвольном выборе точки O равенство $\overrightarrow{OC} = k\overrightarrow{OA} + (1-k)\overrightarrow{OB}$ является необходимым и достаточным условием принадлежности различных точек A, B, C одной прямой.

2493. Стороны параллелограмма разделены по обходу в равных отношениях. Докажите, что точки деления служат вершинами параллелограмма, а центры этих параллелограммов совпадают.

2494. В четырехугольнике ABCD точка E — середина AB, K — середина CD. Докажите, что середины отрезков AK, CE, BK и DE являются вершинами параллелограмма.

2495. На сторонах треугольника заданы точки, которые делят стороны в одном и том же отношении (в каком-либо одном направлении обхода). Докажите, что точки пересечения медиан данного треугольника и треугольника, имеющего вершинами точки деления, совпадают.

2496. В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N — середины отрезков PQ и ST. Найдите отрезок MN.

2497. Проведены четыре радиуса OA, OB, OC и OD окружности с центром O. Докажите, что если

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$
.

то АВСО — прямоугольник.

2498. Дан квадрат ABCD, сторона которого равна $4\sqrt{2}$. Точка O выбрана в плоскости квадрата так, что OB = 10, OD = 6. Найдите угол между вектором OB и вектором, направленным из точки O в наиболее удаленную от нее вершину квадрата.

2499. Дан квадрат ABCD, сторона которого равна 8. Точка O выбрана в плоскости квадрата так, что $OB = 10\sqrt{2}$, $OD = 6\sqrt{2}$. Найдите угол между вектором OB и вектором, направленным из точки O в ближайшую к ней вершину квадрата.

2500. Пусть H — точка пересечения высот треугольника ABC, O — центр описанной окружности. Докажите, что

$$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

2501. Точки M, K, N и L — середины сторон AB, BC, CD и DE пятиугольника ABCDE, P и Q — середины отрезков MN и KL (рис. 99). Докажите, что

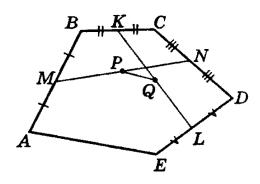


Рис. 99

отрезок PQ в четыре раза меньше стороны AE и параллелен ей.

2502. Из медиан AA_1 , BB_1 и CC_1 треугольника ABC составлен треугольник KMN, а из медиан KK_1 , MM_1 и NN_1

треугольника KMN — треугольник PQR. Докажите, что третий треугольник подобен первому, и найдите коэффициент подобия.

2503. Из произвольной точки M внутри равностороннего треугольника опущены перпендикуляры MK_1 , MK_2 , MK_3 на его стороны. Докажите,

что
$$\overrightarrow{MK}_1 + \overrightarrow{MK}_2 + \overrightarrow{MK}_3 = \frac{3}{2} \, \overrightarrow{MO}$$
 , где

О — центр треугольника.

2504. Докажите, что сумма квадратов расстояний от какой-нибудь точки окружности до вершин правильного вписанного треугольника есть величина постоянная, не зависящая от положения точки на окружности.

2505. Даны точки $A(x_1; y_1)$, $B(x_2; y_2)$ и прямая ax + by + c = 0. Известно, что $ax_1 + by_1 + c > 0$, а $ax_2 + by_2 + c < 0$. Докажите, что точки A и B расположены по разные стороны от этой прямой.

2506. Две окружности касаются внешним образом в точке A. Прямая, проходящая через точку A, вторично пересекает окружности в точках B и C. Найдите геометрическое место середин отрезков BC.

2507. O — центр правильного многоугольника $A_1A_2A_3...A_n$, X — произвольная точка плоскости.

а) Докажите, что

$$\overrightarrow{OA}_1 + ... + \overrightarrow{OA}_n = \overrightarrow{0}$$
.

б) Докажите, что

$$\overrightarrow{XA}_1 + ... + \overrightarrow{XA}_n = n \cdot \overrightarrow{X}_0$$
.

2508. Найдите наименьшее значение выражения

$$|a+b| + \sqrt{(a-1)^2 + (b-3)^2}$$
.

2509. Точки K, N, L, M расположены соответственно на сторонах AB, BC, CD и AD выпуклого четырехугольника ABCD, причем $\frac{AK}{KR} = \frac{DL}{LC} = \alpha$,

 $\frac{AM}{MD} = \frac{BN}{NC} = \beta$. Докажите, что точка пересечения P отрезков KL и MN делит их в тех же отношениях, т. е. $\frac{MP}{PN} = \alpha$, $\frac{KP}{PL} = \beta$.

2510. Какую линию описывает середина отрезка между двумя пешеходами, равномерно идущими по прямым дорогам?

2511. На сторонах треугольника *ABC* во внешнюю сторону построены подобные между собой треугольники

ADB, BEC u CFE
$$\left(\frac{AD}{DB} = \frac{BE}{EC} = \frac{CF}{FA} = k\right)$$
;

$$\angle$$
 ABD = \angle BEC = \angle CFA = α $\Big)$. Докажите, что:

- 1) середины отрезков AC, DC, BC и EF вершины параллелограмма;
- 2) у этого параллелограмма два угла равны α , а отношение сторон равно k.
- **2512.** На координатной плоскости нарисовали график функции $y=x^2$, а затем стерли оси координат. Восстановите их с помощью циркуля и линейки.

2513. Назовем точку плоскости рациональной, если ее обе координаты — рациональные числа. Докажите, что если на окружности $x^2 + y^2 = R$ (R — целое) есть хотя бы одна рациональная точка, то на этой окружности бесконечно много рациональных точек.

12. ГЕОМЕТРИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

2514. Докажите, что при центральной симметрии окружность переходит в окружность.

2515. Докажите, что при центральной симметрии каждый луч переходит в противоположно направленный луч.

2516. Пусть две прямые пересекаются под углом а. Докажите, что при

повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдет в прямую, параллельную другой.

2517. Докажите, что при повороте окружность переходит в окружность.

2518. Докажите, что при параллельном переносе окружность переходит в окружность.

2519. Докажите, что при гомотетии окружность переходит в окружность.

2520. Верно ли следующее утверждение: «Если четырехугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб»?

2521. Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A_1 на прямой BC. При этом вершина B перешла в некоторую точку B_1 , лежащую с точкой A по одну сторону от прямой BC. Докажите, что прямые AB и B_1C параллельны.

2522. На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC (AM = AN). Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

2523. Существует ли фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?

2524. Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо — против) относительно точки A вершина B переходит в C.

2525. Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A_1 на прямой BC. При этом вершина B перешла в некоторую точку B_1 , лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A_1B_1C повернули вокруг